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Abstract

The task of registering several range images
taken from different viewpoints into a single co-
ordinate system is usually divided into two steps:
first, finding a rough estimate of the searched
transformation on the base of reduced parts of
the data sets, and second, finding the precise
transformation with another method on the base
of the complete information given by the data
sets. Using different approaches for these regis-
tration steps has no fundamental but only prac-
tical reasons: for the fine tuning step it exists
an easily implementable algorithm whose effi-
ciency and precision has been proven in many
experiments, but which is not applicable for find-
ing an initial rough estimate of the searched
transformation. We present a multiresolution ap-
proach to the registration problem that has the
potential to combine these two registration steps
and is based on hierarchical Hough methods and
local frames defined in each surface point.

1 Introduction

In order to digitize the surface of a complex ob-
ject, several range images have to be taken from
different viewpoints. To generate a complete
model from these images, in a first step all of
them have to be transformed to the same coordi-
nate system. In order to find the rigid transforma-
tion (rotation + translation) between two range
images with overlapping surface regions usu-
ally the standardIterated Closest Point algorithm
(ICP) [1, 4, 23, 8, 20, 19] is performed. The
ICP algorithm iteratively identifies closest points
as corresponding points and then minimizes in

each iteration step a least squares sum of the dis-
tances between these corresponding points with
respect to the transformation parameters. Since
the whole information of the images can be used,
such an approach allows a quite precise regis-
tration. However, the algorithm has the draw-
back that it only converges to the correct trans-
formation if it starts with a good estimation of
the searched transformation. To get this initial
transformation, often features are extracted from
the data and then attached to each other, either
manually [15] or by using complicated heuristics
[20, 8, 5, 21, 22]. Other approaches try to find a
good estimation of the correct transformation by
global optimization strategies like genetic algo-
rithms [2] or mean field theory [17]. To sum-
marize, all known registration approaches divide
the registration task into two steps: first find-
ing a rough estimate on the base of a reduced
data set, then changing the method and finding
the precise transformation based on the whole
given information. We believe that some aspects
of this general approach are inevitable: firstly,
the initial estimation of a rough transformation
is only possible on a reduced data set because of
the complexity of the problem, and secondly, the
most precise transformation can only be deter-
mined by using the whole information of the data
sets. However, in principle there is no reason
to change the registration method between these
two steps. Therefore we have developed a mul-
tiresolution approach to the registration problem
that has the potential to combine the two registra-
tion steps. The new approach is based on hierar-
chical Hough methods and local frames defined
in each surface point. Hough methods [16, 9]
as well as local frames [8] have been already



used for finding rough estimates of transforma-
tions. Hierarchical Hough methods are also well
known [11]. We show that their combination in
a multiresolution ansatz promises a unified ap-
proach to the rigid registration problem.

2 Multiresolution Registra-
tion

2.1 Basic Idea

In a first step of our algorithm we calculate a
local frame for every data point of both range
images. With the help of these local frames it
is possible to calculate for each point in range
image 1 the transformation to each point in
range image 2. The transformation parameters
�α�β�γ� tx� ty� tz� are stored in a six dimensional
accumulation table by incrementing a counter
in the table at position�α�β�γ� tx� ty� tz�. Meth-
ods using accumulation tables in this fashion are
called Hough methods. Since transformations
calculated from correct point correspondences
result in the same transformation while all other
transformations are distributed more or less ran-
domly in the parameter space, we can expect a
peak in the Hough table at the position of the
searched transformation (see Figure 1).

2.2 Problems

Transforming each point of image 1 in each point
of image 2 is anO�n2� operation (n is the num-
ber of points in each image), which cannot be
performed in reasonable time whenn is large
as is the case for a typical range image (n �
100�000). In addition the calculation of local
frames (and therefore also the calculation of the
transformations) may be heavily influenced by
noise, especially if we use differential quantities
for this computation. Last but not least the mem-
ory consumption of the six dimensional Hough
table can be prohibitive. For example, if we
wanted an angle accuracy of 5� we would need
360��5� � 72 intervals in this parameter dimen-
sion of the Hough table. Using just as many in-
tervals in each parameter dimension we would

Figure 1: Each pair of points�P�P�� with one
point from the first image and one point from the
second image defines a transformation with the
help of their local frames. The correct transfor-
mation between the images is given by the most
frequently occuring transformation in the Hough
table.

get 726 � 140�109 cells in the Hough table. At
each cell we have a counter that needs at least
2 bytes so that the total memory consumption
of the Hough table under the above conditions
would be at least 280 GB.

2.3 Solutions

In order to solve theO�n2� problem, we have to
reducen. This can be done by transforming re-
gions instead of points into each other. The lo-
cal frames we need for the determination of the
transformation can be averaged over all points in
the regions. There is also the hope of reducing
the influence of noise of the local frames by this
averaging process.

In order to reduce the memory consumption
of the Hough table there are two possibilities.
Firstly, instead of using one six dimensional
Hough table we can use two 3-dim, three 2-
dim or six 1-dim Hough tables that need signif-
icantly less memory to reach the same accuracy
for the determination of the transformation. Sec-
ondly, we can limit the number of intervals in
each Hough table dimension so that the memory
consumption of the whole Hough table is accept-
able. To reach a high accuracy in the Hough ta-



Figure 2: The multiresolution registration algo-
rithm.

ble we can refine the subdivision of the Hough
table after detection of a Hough peak and then
iterate this procedure. Since one 6-dim Hough
table promises the best signal to noise ratio we
decided to use the hierarchical approach for a 6-
dim Hough table. In addition, in this way the
accuracy in the determination of the transforma-
tion is not limited by memory considerations.

2.4 The Algorithm

For an overview of the algorithm see Figure 2.

2.4.1 Initialization

Determination of Translation Ranges. In a
first initialization step we limit the range of rea-
sonable translations: after an initial translation
overlaying the centers of mass of the two range
images, the norms of all reasonable remaining
translations are bounded by the sum of greatest
distances of points in image 1 and of points in
image 2 to the joint center of mass.

Computation of Local Frames. In a second
initialization step we have to compute local
frames for every point of both range images.
Using a differential geometry approach we can
compute principal frames consisting of the nor-
mal in the given point and the directions of mini-

mal and maximal curvatures [6, 8]. Usually these
directions are calculated from the eigenvectors of
the Weingarten map with the help of a local poly-
nomial approximation of the surface [13]. How-
ever, more efficient computation schemes have
already been developed [12]. Another possibil-
ity to compute local frames that does not rely on
differential quantities is described in [5].

Initial Region Determination. In a third ini-
tialization step we have to determine initial re-
gions that are transformed into each other with
the help of averaged local frames. This should be
done without introducing threshold values since
optimal values usually depend on the given ob-
ject and the threshold value optimization is a sep-
arate problem. In addition it should be possi-
ble to predict the number of resulting regions of
this segmentation step since otherwise the whole
algorithm can fail due to theO�n2� complex-
ity. Furthermore, the resulting regions in two
range images from different viewpoints should
approximately correspond to each other so that
the transformations of all corresponding regions
are approximately the same and therefore can ac-
cumulate in the Hough table. Last but not least it
should be possible to refine the resulting regions
to allow taking more and more information into
account during the iterations of the algorithm.

We propose a curvature based 2D Haar
wavelet reduction for the region determination
and a quadtree decomposition for an elegant and
efficient access to the averaged local frames of
these regions. Details can be found in Subsection
2.5. Our approach relies on the raster structure of
the range images. It should be possible to gener-
alize our approach to triangle meshes by using a
progressive mesh (PM) representation [10, 3] or
by a multiresolution analysis of the surfaces with
the help of a surface wavelet construction [18, 7].
However, one advantage of our approach is the
possibility of a straightforward generalization to
volume data.

2.4.2 Iteration

After the initialization steps we have to iterate
the following steps:



Hough Table Construction. Firstly, a 6-dim
Hough table is constructed. The extensions of
each dimension are determined by the last it-
eration step. The initialization of the transla-
tion dimensions are determined by the first ini-
tialization step. When using Euler angles for
the representation of the rotation the initializa-
tion of the rotation dimensions are given by
α � 0� � �360��β� 0� � �180��γ� 0� � �360�. The
number of Hough table cells and therefore the
resolution of the Hough table follows from signal
to noise ratio considerations described in Sub-
section 2.6.

Region Transformations. Secondly, regions
from both range images are transformed into
each other resulting in the following rotationR
and translationt:

Ri� j� � R j�R
t
i� (1)

ti� j� � p j��R j�R
t
ipi (2)

wherepi is the center of mass of regioni and
the columns ofRi are given by the averaged lo-
cal frames of regioni. After each calculation
of a transformation a counter in the Hough ta-
ble at the position of the transformation parame-
ters�α�β�γ� tx� ty� tz� is incremented. It can be in-
cremented just by one or in a more sophisticated
way in dependence of differences of expected in-
variances of the regions. As invariances can be
taken e.g. averaged minimal or maximal curva-
tures, the areas of the regions or, when using ad-
ditional information like the texture, the differ-
ences of the intensity values to the neighboring
regions. Therefore, the countercα�β�γ�tx�ty�tz at the
Hough table position�α�β�γ� tx� ty� tz� can be up-
dated by

cα�β�γ�tx�ty�tz �
1

1�∑k

�
a�k�

i �a�k�
j�

�2

� cα�β�γ�tx�ty�tz

(3)

wherea�k�i is thek-th invariant attribute of region
i. The term 1

1���� ensures that a transformation
has the more influence, the less is the difference
between the invariant attributes of the regions,
and that the increment is limited to one.

Hough Peak Determination. Thirdly, the
maximal entry in the Hough table, i.e. the Hough
peak, has to be detected. Since transformations
that lie on the border of a Hough table cell can be
accidently distributed over many cells, in a first
step each counter in the Hough table is summed
over all counters of its direct neighboring cells
before determining the Hough peak. When the
Hough peak is detected we also have the re-
fined dimension extensions for the next iteration
Hough table: we take the direct neighbors of the
Hough peak cell as the new ranges. If, due to
a too small signal to noise ratio, no Hough peak
can be detected in the highest region resolution,
the best possible transformation is found and the
algorithm stops.

Determination of Possible Corresponding Re-
gions. Fourthly, in order to avoid transforming
again each region of image 1 into each region of
image 2 in the next iteration step and in order
to allow in this way a region refinement with-
out failing on theO�n2� problem, possible cor-
responding regions have to be determined from
transformations falling in the Hough peak cell.
To analyze this, each region of image 1 has again
to be transformed into each region of image 2.
Whenever a transformation falls in the new range
of the next iteration Hough table, the appendant
regions are memorized as possible correspond-
ing regions.

Region Refinement. Fifthly, before starting
the next iteration, the regions are refined. In our
approach the region refinement follows from the
quadtree decomposition. Details can be found in
the next Subsection 2.5.

In our actual implementation we separate in
addition the refinement of the regions and the
refinement of the Hough table to different iter-
ation steps. Only if no Hough peak can be de-
tected anymore a refinement of the regions is per-
formed.



Figure 3: Nonstandard Haar wavelet decomposition and reconstruction from the greatest 250, 500,
1000 and 5000 wavelet coefficients.

2.5 Implementation of Hierarchical
Segmentation

The principle of the Haar wavelet based region
determination can be best illustrated by Figure
3 for an intensity image: After performing a so
called nonstandard wavelet decomposition [18]
into 1024�1024 wavelet coefficients we recon-
struct the image from the greatest 250, 500, 1000
and 5000 wavelet coefficients resulting in the
same amount of regions; the other coefficients
are set to zero. The greatest wavelet coeffi-
cients either represent big regions or sharp vari-
ations in small regions so that regions of differ-
ent sizes arise. Since the images consisting of
more wavelet coefficients also contain the coef-
ficients of the images consisting of less wavelet
coefficients, these images subdivide the regions
of their lower resolution counterparts. In this
way the original intensity image is hierarchically
segmented.

In order to make the region determination in-
dependent of the viewpoint of the range images,
we perform the described wavelet based segmen-
tation on the maximal (in absolute value) curva-
ture maps of the given range images (see Fig-

Figure 4: The wavelet based, hierarchical seg-
mentation is independently performed on the
maximal curvature maps of two range images
from different viewpoints.

ure 4). The artifacts in the reconstructed images
result from a special treatment of invalid data
points.

Until now we only know that there are some
regions in the reconstructed images but we have
no easy access to these regions. To get this ac-
cess we perform a quadtree decomposition [18]
of the reconstructed curvature map with 250



Figure 5: A quadtree representation permits easy
access to the regions as the leafs of the quadtree.

wavelet coefficients (see Figure 5): The root of
the quadtree corresponds to the whole image;
it contains the mean value (here mean maximal
curvature) of the entire image. The root has four
children, each of them corresponds to one of the
image’s four quadrants and contains the mean
value of the quadrant. Each child has again four
children, and so on. The decomposition of a
child ends when there is no further structure in
the parent’s quadrant corresponding to the child.
Such a child is called a leaf. Performing theiden-
tical1 quadtree decomposition on the map of lo-
cal frames and on the map of points (range im-
age) we get an elegant access to the local frames
and the centers of mass of each region. In addi-
tion, we can easily refine the regions by decom-
posing all leafs in the quadtree decomposition of
local frames and of 3D points.

After the quadtree decomposition the regions
can be easily transformed into each other and the
transformations can be registered into the Hough
table (see Figure 6).

2.6 Hough Table Resolution

The number of Hough cellsNH in the Hough
table determines the memory consumption (we
need at least 2 bytes for the counter in each
Hough cell) as well as the resolutions of the
transformation dimensionsα�β�γ� tx� ty and tz
(there are approximately6

p
NH intervals in each

dimension). We are interested in the minimal
number of Hough cells that are necessary so that

1The decision for a decomposition of a child is made
on base of the curvature map and not on the map of local
frames or the map of points itself.

Figure 6: Registration by transforming areas into
each other.

the transformations registered in the Hough ta-
ble will not randomly accumulate to a peak com-
parable to the expected signal peak. To analyze
this problem we assume that the transformations
registered in the Hough table are randomly dis-
tributed with equal probabilityp to fall in a cer-
tain of theNH Hough table cells, i.e.

p �
1

NH
� (4)

Thus, if we calculateNT transformations, the
probability that exactlyl of them randomly fall
in a certain Hough table cell is given by the bi-
nomial distribution,

pl �

�
NT

l

�
pl �1� p�NT�l (5)

and the probability thatk or more thank trans-
formations fall in a certain Hough table cell is,

p�k �
NT

∑
l�k

pl� (6)

Since we transform each region of image 1 in
each region of image 2, the number of transfor-
mationsNT is given by

NT � 2NR1NR2 (7)

whereNRi is the number of regions in imagei
and the factor 2 results from the fact that the lo-
cal frames that are the base of the transformation
calculations are not uniquely determined [8].



If we assume that the probability thatk or
more thank transformations fall in a certain
Hough table cell is independent of the same
event in another cell2, the probability that there
are m cells in the Hough table withk or more
thank transformations is again given by a bino-
mial distribution,

p̃�m �

�
NH

m

�
p�k �1� p�k�

NH�m � (8)

For the expectation value (as well as for the stan-
dard deviation) of the binomial distribution there
are easy analytical expressions [14]. Therefore,
we get for the expected number of Hough cells
with k or more thank entries in the Hough table,

E�k � NH p�k� (9)

The expectation valueE�k for k given by the ex-
pected signal should be much less than 1 to make
sure that there is no random peak in the Hough
table with the same size as the expected signal
NS. The expected signal is given by the num-
ber of regions in the overlapping area of the two
images. Since we do not know this number be-
forehand we have to prescribe it in actual calcu-
lations ofNH .

Putting Eqs. (4)–(9) together we get an equa-
tion that cannot be analytically solved forNH

even if we approximate the binomial distribution
in Eq. (5) by a Gaussian distribution and the sum
in Eq. (6) by an integral. Therefore in our actual
calculations we chooseNH in a way that the sig-
nal to noise ratio has a prescribed values. As
noise we define the expected value of transfor-
mations in a Hough cell plus three times its stan-
dard deviation. Therefore we have for the signal
to noise ratio:

s �
NS

µUnderground�3σUnderground

(10)

with

µUnderground � NT p� (11)

σUnderground �
p

NT p�1� p�� (12)

2This is certainly not the case, but forNT � k this is a
reasonable approximation.

This can be easily solved forNH � 1�p. We
give a typical example: fors � 10�NR1 � NR2 �
103�NS � NRi�50� 20 we getNH � 6�5� 106.
This means we have6

p
NH � 14 intervals per

dimension in the Hough table which corre-
sponds to an angle resolution of approximately
360��14� 25�. Inserting the calculatedNH in
Eq. (9) we getE�NS � 10�250. Therefore, for a
signal to noise ratio ofs� 10 we can be sure that
there is no random peak in the Hough table that
can be confused with the signal peak.

3 Conclusions

In this paper, we have presented an iterative hi-
erarchical registration algorithm that has the po-
tential to combine the two steps of usual regis-
tration in one approach: the rough estimation of
the searched transformation and its precise de-
termination. The algorithm is hierarchical in two
ways: the objects to be registered and, indepen-
dently, the transformation parameter space are
hierarchically decomposed. In determining the
transformation from a Hough table the algorithm
is expected to be very robust against outliers.

The practical feasibility of the whole algo-
rithm has to be proven in the near future.
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